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Abstract— A remote user authentication scheme is a client-
server based protocol whereby a server identifies the identity 
of a remote client when it logs on to the server through 
unsecured network. This paper proposes a protocol to 
authenticate remote smart cards using elliptic curves. The 
proposed protocol has three phases- registration phase, login 
phase, and authentication phase. When a genuine user wants 
to login the computer system, he has to insert his smart card 
into the login device and keys in his identity, password and 
private keys. 
Keywords— Elliptic Curve, Smart Card, Cryptography, 
ECDLP  

 
I. INTRODUCTION 

We live in an information age where information is treated 
as an asset that has a value like any other asset that we 
possess. So, we need to keep information secured from 
attacks and hackers. To keep information safe and secured 
it needs to be hidden from unauthorized access, protected 
from unauthorized modification and so on. Just a few 
decades from today, computer networks had been created 
and it has been creating a change in the use of information 
in the sense that information is distributed. It is now 
required to an authorized person to send and procure 
information from a far off place using computer networks. 
A new requirement has come up in the picture when the 
information is transmitted from one computer to another i.e., 
there should be a way to maintain its confidentiality on the 
way when it is transported from one computer to another in 
the network. So, the need for the public-key cryptography 
comes into picture. 
In public-key cryptography, there are two keys:- a private 
key and a public key [16]. The private key is kept by the 
receiver. The public key is announced to the public. There 
are numerous public-key cryptography algorithms in the 
literature but many of these are found to be insecure and 
many are impractical to implement and use. As of now, 
only a few of those algorithms are considered both secure 
and practical. Of these secure and practical public-key 
algorithms, a few are suitable for encryption and still others 
are only useful for authentication. For example, RSA is 
presently used for both encryption and authentication [15]. 
It is very slow in actual practise. Elliptic Curve 
Cryptography is one of a few public-key algorithms that 
can be used in place of RSA. We begin with a discussion on 
Smart cards. 
I.  What is a smart card? 
A smart card looks like a debit card in size and shape, but 
inside it is completely different as it contains a computer 

with a CPU and a memory [7]. The chip of a smart card 
contains a microprocessor, ROM, programmable ROM, and 
a small amount of Random Access Memory. A 
programmable ROM needs a larger volume than a PROM 
of the same size making programmable ROM size becomes 
an important factor for the price of a smart card. At present, 
most smart cards have an 8-bit microprocessor, but there 
are some smart cards which are incorporated with 16-bit or 
32-bit processors running at 25 to 32 MHz [7]. An optional 
cryptographic coprocessor will enhance the performance of 
cryptographic operations. The beauty of having a 
microprocessor in cards is that by performing signature and 
decryption operations on the card itself, the user's private 
key never needs to leave the card. At the same time, the 
integration of smart cards into your system introduces its 
own security issues, as many people access card data in a 
variety of applications. The information stored in the ROM 
is written during production. It contains the card operating 
system and might also contain some applications. The 
programmable ROM is used for permanent storage of data 
but can be erased and rewritten again. Even if the smart 
card is unpowered, the programmable ROM still keeps the 
data. 
 

II.  AUTHENTICATION 
In authentication, the identity of the entity or user is 
verified prior to access to the system resources or starting a 
transaction of data or value [16]. For example, a student 
who needs to access his university resources needs to be 
authenticated during the logging process. This is to protect 
the interests of the university and the student. 
Remote user authentication using smart cards is a good 
solution for many applications. Smart card implementation 
ensures secure communications. Several schemes using 
timestamp for remote authentication have already been in 
use and discussed in the literatures [10]. A remote password 
authentication scheme authenticates the legitimacy of the 
remote user over insecure channel. 
The ways in which someone may be authenticated fall into 
three categories, based on what are known as the factors of 
authentication: something you know, something you have, 
or something you are [16]. Each authentication factor 
covers a range of elements used to authenticate or verify a 
person's identity prior to being granted access, approving a 
transaction request, signing a document or other work 
product, granting authority to others, and establishing a 
chain of identity. 
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I. Something known: This is a secret known only to 
the claimant that can be checked by the verifier. 
Examples are a password, a PIN, and a secret key 
etc. 

II. Something possessed: This is something that can 
prove the claimant’s identity. Examples are a 
passport, an identity card, and a smart card. 

III. Something inherent: This is the inherent 
characteristics of the claimant. Examples are 
conventional signatures, fingerprints, voices, and 
retina scan image. 

 
III.  SMART CARD SECURITY 

As the issuer of card, you must define all of the desired 
parameters for card and system security. As mentioned 
above, a card or token-based system treats a card as an 
active computing device. The communication between the 
host and the card can be series of sub-communications to 
determine if the card is authorized to access the system. The 
process also checks if the user can be identified, 
authenticated in case the card present the appropriate 
credentials to initiate a transaction with the system. The 
card itself can also demand the same security requirements 
from the host before starting a transaction.  
 

IV.  THREATS TO CARDS AND DATA SECURITY 
Taking into account the security system planning, there is a 
need for authorized users to access data reasonably easily 
and at the same time there are many threats that this access 
presents to the integrity and safety of the information. 
When analyzing the threats to your data, an organization 
should look closely at two specific areas: Internal attacks 
and External attacks [16]. The first common compromise of 
data comes from disgruntled employees. Knowing this, a 
good system manager separates all back-up data and back-
up systems into a separately partitioned and secured space. 
The introduction of viruses and the attempt of formatting of 
network drives is typical internal attack behaviour. 
External attacks are typically aimed at the weakest link in a 
company’s security armour. A typical example of external 
attack is the interception of the transmission of your data in 
the Internet.  
 

V.  PROBLEM OF RSA IN SMART CARDS 
The microprocessor on the smart card is there for security 
reason. The microprocessor enforces security mechanism 
while accessing the data on the card. If the host computer 
read and write the smart card's memory, it would be no 
different than a pen-drive. Most smarts cards may have up 
to 16 kilobytes of RAM, 128 kilobytes of ROM, 256 
kilobytes of programmable ROM. Note that in smart card 
terminology, 1K means one thousand bits, not one thousand 
8-bit characters. One thousand bits will normally store 128 
characters - one sentence of text. However, with the 
development in modern data compression techniques, the 
amount of data stored on the smart card can be significantly 
increased beyond this limit.  
One of the main problems of RSA is its demand for a huge 
key length to meet the challenges in today’s security 
scenario. When you create an RSA key pair, you specify a 

key length in bits, as generally you would for other 
algorithms. Specifically, the key length of an RSA key 
specifies the number of bits in the modulus. But the 
million dollar question is “what RSA key length should we 
choose”. 
Experts say that an RSA key length of 1024 bits is 
sufficient for many medium-security purposes such as web 
site logins but for high-security applications such as online 
financial funds transfers or for data that needs to remain 
confidential for more than a few years; you should use at 
least a 2048-bit key and it can be confirmed using table 1. 
To keep data confidential for more than the next two 
decades, RSA experts recommend a key size larger than 
2048 bits [16]. 

TABLE 1 
RSA KEY LENGTHS OF SOME ORGANIZATIONS 

Organization RSA Key length 
Google 1024 
Yahoo 1024 

SBI online 2048 
eBay 2048 

Union Bank of India 2048 
 
A larger key increases the maximum number of bytes that 
we can encrypt at once, and also the security of the 
encryption. But it has a serious problem in practice. With 
every doubling of the RSA key length, decryption is about 
8 times slower. The size of ciphertext also become huge 
considerably. The key length also affects the speed of 
encryption, which is slower by a factor of 4. In this 
situation, it is not at all possible to use RSA in smart cards. 
The use of Elliptic Curves may be a right choice in smart 
card. The comparisons in Table 2 demonstrate that smaller 
parameters can be used in elliptic curve cryptography 
(ECC) than with RSA system at a given security level. By a 
security level of k bits we mean that the best algorithm 
known for breaking the system takes approximately 

2k
steps. The difference in parameter sizes is especially 

pronounced for higher security levels. The advantages that 
can be gained from smaller parameters include speed (faster 
computations) and smaller keys and certificates. At the 132-
bit ECC/1024-bit RSA security level, an elliptic curve 
exponentiation for general curves over arbitrary prime 
fields is roughly 5 to 15 times as fast as an RSA private key 
operation, depending on the platform and optimizations. At 
the 256-bit ECC/3072-bit RSA security level the ratio has 
already increased to between 20 and 60, depending on 
optimizations. To secure a 256-bit AES key, ECC-521 can 
be expected to be on average 400 times faster than 15,360-
bit RSA [22]. 

 
TABLE 2 

RSA AND  ECC KEY SIZES 
Security 
level 

64 80 112 120 128 256 

ECC 106 132 185 237 256 512 

RSA  512 1024 2048 2560 3072 15360 

 
 

Ranbir Soram et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,3856-3866

3857



VI.  ELLIPTIC CURVE 
Elliptic curves are a specific class of algebraic curves. The 
“Weierstrass form“ of an elliptic curve equation [1, 2]:- 

2 3 2
1 3 2 4 6:E y a xy a y x a x a x a       

The constant 1 2 3 4 6, , , ,a a a a a  and the variables ,x y  

can be complex, real, integers, polynomials, or even any 
other field elements. So, the mathematics of elliptic curve 
cryptography is so deep and complicated. But in practice 
we must specify which field, F, these constants and the 
variables, ,x y  belong to and 0  , where   is the 

discriminant of E and is defined as follows [1, 2]:- 

 
2 3 2
2 8 4 6 2 4 6

2
2 1 2

4 4 1 3

2
6 3 6

2 2 2
8 1 6 2 6 1 3 4 2 3 4

8 27 9

4

2

4

4

d d d d d d d

d a a

d a a a

d a a

d a a a a a a a a a a

     

 
 

 

    

 

We say that E is defined over K when the coefficients 

1 2 3 4 6, , , ,a a a a a  (and of course, the variables x and y) 

of the equations come from the elements of the field K. So, 
we sometimes write ( )E K to emphasize that E is defined 

over K, and K is called the underlying field. If E is defined 
over K, then E is also defined over any extension field of K. 
 
A.  ELLIPTIC CURVE OVER GALOIS FIELDS 
Using the real numbers for cryptography has a lot of 
problem as it is very difficult to store them precisely in 
computer memory and predict how much storage will be 
needed for them. The difficulty can be solved by using 
Galois fields. In a Galois field, the number of elements is 
finite [16]. Since the number of elements if finite, we can 
find a unique representation for each of them, which allows 
us to store and handle the elements in an efficient way. 
Galois showed that the number of elements in a Galois field 
is always a positive prime power, and is denoted 

by ( )nGF p . Two special Galois fields are common in 

Elliptic Curve Cryptography. They are ( )GF p  when 

1n   and (2 )nGF when 2p  . 

 
B.  ELLIPTIC CURVE OVER PRIME GALOIS FIELDS 
An elliptic group over a prime Galois Field uses a special 
elliptic curve of the form  

2 3(mod ) (mod )y p x ax b p    

 
 where , ( ),0a b GF p x p    and 

3 216(4 27 ) m od 0a b p   . The constants a and b 

are non-negative integers smaller than the prime p. The 

condition that 
3 216(4 27 )mod 0a b p    implies 

that the curve has no “singular points” [1 ,2]. 
 
 

C.  GROUP LAW 
The mathematical property that makes elliptic curves useful 
for cryptography is simply that if we take two (distinct) 
points on the curve, then the chord joining them intercepts 
the curve in a third point (because we have a cubic curve). 
If we then reflect that point in the x-axis we get another 
point on the curve (since the curve is symmetric about the 
x-axis). This allows us to define a form of arithmetic on the 
curve. Let E be an elliptic curve defined over the field K. 
There is a chord-and-tangent rule for adding two points in 

( )E K  to give a third point in ( )E K . Take any two points 

on the curve; draw a line between them; and the negative of 
the third point, which intersects both the curve and the line, 
is the “sum” of the first two points. Together with this 
addition operation, the set of points ( )E K  forms an 

abelian group with 0 serving as its identity [1, 2]. It is this 
group that is used in the construction of elliptic curve 
cryptographic systems. Algebraic formulae for the group 
law can be derived from the geometric description. 

 

Group law for 
2 3y x ax b    over ( ).GF p  

I. Identity: 0 0P P P     for all ( ).P E K  

 
II.  Negative: If ( , ) ( )P x y E K  , 

then ( , ) ( , ) 0x y x y   . The point ( , )x y is 

denoted by -P and is called the negative of P; note 
that -P is indeed a point in ( )E K . Also, 0 0  . 

 
III. Point addition: Let 1 1( , ) ( )P x y E K  and 

2 2( , ) ( )Q x y E K  where P Q  .Then 

3 3( , )P Q R x y  , where 
2

3 1 2 3 1 3 1, ( )x x x y x x y        and   

2 1

2 1

y y

x x
 



 

 
IV. Point doubling: Let 1 1( , ) ( )P x y E K  , 

where P P  . Then 3 32 ( , ),P R x y   where 
2

3 1 3 1 3 12 , ( )x x y x x y       and  

1

2

1

3

2

x a

y



  

 
D.  GEOMETRICAL INTERPRETATION OF GROUP 
LAW 
 
I. Negative of a Point 
Let’s take a point ( , ).P x y  The formula for finding 

is ( , )P P x y     as shown in the figure 1. 
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FGURE 1: NEGATIVE OF A POINT 
II. Addition of two points 

We can define the addition of any two points on an 
elliptic curve by drawing a line between the two points and 
finding the point at which the line intersects the curve. For 
the math to work, the negative of the intersection point is 
defined as the “elliptic sum” by mathematicians as shown 
in figure 2. 
 Mathematically we write: 

R = P + Q. 
 

 
 

FIGURE 2 : ADDITION OF TWO POINTS 
 

It turns out that this “addition” satisfies all the usual 
algebraic properties that we associate with integers, 
provided we define a single additional point “the point at 
infinity”, which plays the role of 0 in the integers. In other 
words, we can define a form of arithmetic on the points of 
an elliptic curve (plus the point at infinity) that lends itself 
to normal algebraic manipulation. In mathematical terms, 
we can define a finite additive abelian group on the points 
of the curve, with the zero being the point at infinity [2].  
 

 

FIGURE 3: DOUBLING A POINT
 

III. Doubling of a point 

If 1 1( , ),P x y then the double of P, denoted 

by, 3 3( , )R x y , is defined as follows. First draw the 

tangent line to the elliptic curve at P. This line intersects the 
elliptic curve in a second point. Then R is the reflection of 
this point in the x -axis. This is depicted in figure 3. We can 
extend this idea to define 3 ,P P P P   and extending 

this idea further, we can define ...P P P k    times 

kP , for any integer k, and hence define the order of P, 

being the smallest integer k such that 0kP  , where 0 
denotes the point at infinity[16]. Figure 4 shows some 

multiples of  ( 1, 2)P       on the curve 2 3 5 .y x x   
 
 

FIGURE 4: SOME MULTIPLES OF ( 1, 2).P     
 

To elucidate doubling of a point, consider the elliptic curve 

  
2 3 4y x x    

defined over (23).GF  This curve is represented by 

23(1,4).E  We first note that 
3 24 27 4 432 436 22(mod 23) 0(mod 23).a b     

The points in 23(1,4)E  are the following [2]:- 

 
TABLE 3 

POINTS ON THE CURVE 23(1,4)E  

0 (0,2) (0,21) (1,11) (1,12) (4,7) 
(4,16) (7,3) (7,20) (8,8) (8,15) (9,11) 
(9,12) (10,5) (10,18) (11,9) (11,14) (13,11) 
(13,12) (14,5) (14,18) (15,6) (15,17) (17,9) 
(17,14) (18,9) (18,14) (22,5) (22,19) 

 
Let (4,7) and (13,11).P Q  Then 

3 3( , )P Q R x y   is computed as follows-

 

 

 
1

2
3

3

11 7 4
4 9 ( mod 23) 4 18( mod 23) 72 mod 23 3

13 4 9
3 4 13 8 15 (mod23), and

3(4 15) 7 40 6 (mod23)

x

y

        


     
     

 

Hence, (15,6).R   

Ranbir Soram et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,3856-3866

3859



Again, let (4,7).P   Then 2P P P  is calculated as 

follows:- 
2

1

2
3

3

3 4 1
49 14 49 5 245 ( mod 23 ) 15

14

15 8 217 10(mod 23) and

15(4 10) 97 18(mod 23).

Hence, 2 (10,18).

x

y

P

   
       
 
   
    



 

 

E.  ELLIPTIC CURVE OVER (2 ).nGF  

Let’s look at elliptic curves over (2 )nGF .That means our 

constants are either polynomial or normal basis numbers. It 
also means we cannot use the simplified version of equation, 
which we used for integer numbers, for our elliptic curve 
equations. 
The mathematicians tell us that we need to use either this 
version: 

2 3 2y xy x ax b     
 

(1) 

or this version 
2 3y y x ax b     (2) 

 
But, the mathematicians say that the second form above, 
equation (2), is called a “supersingular” curve. These forms 
have the advantage that they can be computed quickly. 
However, being a special class of curves, they have some 
very special properties. These properties make 
supersingular curves unsuitable for cryptography. 
The curves of equation (1) are called “nonsupersingular.” 
To date, no method of attack is known to be less than fully 
exponential in time. Curves of this form are excellent for 
cryptographic applications. One must be careful in choosing 
the coefficients to get maximum benefit of security. A poor 
choice can create a curve that is easier for the cryptanalyst 
to attack. For equation (1) to be valid, b must never be 0. 
However, a can be 0. The rules are the same as before: 
Take any two points on the curve; draw a line between 
them; and the negative of the third point, which intersects 
both the curve and the line, is the “sum” of the first two 
points. Here we give the group laws of the first form of the 
curve[ 1,2]. 

Group law for 
2 3 2y xy x ax b     over (2 )nGF  

  
I. Identity: 0 0P P P     for all .P E  

 
II.  Negative: If ( , ) ,P x y E   then 

( , ) ( , ) 0.x y x x y    The point ( , )x x y  is 

denoted by -P and is called the negative of P; note 
that -P is indeed a point in E. Also, 0 0.   
 

III. Point addition: Let 1 1( , )P x y E  and 

2 2( , )Q x y E   where P Q  .Then 

3 3( , )P Q R x y  , where 

2
3 1 2x x x a       and 

3 1 3 3 1( )y x x x y     with 

2 1

2 1

y y

x x
 


  

 
IV.  Point doubling: Let 1 1( , ) ,P x y E   

where P P  .  Then 3 32 ( , ),P R x y   where 
2

3x a       and  2
3 1 3 3y x x x    with  

1
1

1

y
x

x
     

 
Let us take an elliptic curve [16] 

2 3 3 2 1y xy x g x     over  
3(2 )GF   under the 

irreducible polynomial 
3( ) 1.f x x x    Here the 

generator, g, satisfies the relation 
3 1 0g g    or 

3 1g g  as the arithmetic is over (2).GF  The 

following table 4 shows the values of 'g s  and the points 

on the curve are  given in table 5. 
 TABLE 4 

POSSIBLE VALUES OF  g’s 

0 000 3 1g g   011 

1 001 4 2g g g   110 

g 010 5 2 1g g g    111 

g2 100 6 2 1g g   101 

 
 

TABLE 5 
POINTS ON THE GIVEN CURVE

    0  (0,1)  2( ,1)g  
2 6( , )g g  

3 2( , )g g  
3 5( , )g g  

5( ,1)g  
5 4( , )g g  

6( , )g g  
6 5( , )g g  

Let (0,1)P   and 
2( ,1).Q g We have 

3 3( , )P Q R x y    is computed as follows. 

 

3

3

2

2 2 3 5
1 2

5 5
1 3 3 1

5 2 4

1 1
0

0

0 0 0 .

and

( ) 0(0 ) 1

1 .

g

x x x a g g g

y x x x y g g

g g g g



 




 



          

       

    

  

So, 
5 4( , ) (111,110).R g g   
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Again take 2
3 3( ,1). 2 ( , ).P g P P P R x y      

 

3

2 2 5 3
2

2 6 3 3 6

2
3 1 3 3

4 9 6 4 2 2

4 2 5

1
1

.

and

( 1)

1 ( ) 1 .

g g g g g
g

x a g g g g

y x x x

g g g g g g

g g g g



 



      

      

  

      

     

 

Therefore, 6 5
3 3( , ) ( , ) (101,111).R x y g g    

 
F.  HASSE THEOREM AND POINT COUNTING 

Let E be an elliptic curve defined over qF . The number of 

points in ( )qE F , denoted # ( )qE F , is called the order of 

E over qF . Then Hasse’s theorem says that the order 

of ( )qE F  satisfies the inequality [1,2]   

1 2 # ( ) 1 2 .qq q E F q q       

An alternate formulation of Hasse’s theorem is the 

following: if E is defined over qF , then 

# ( ) 1qE F q t    where | | 2t q ; t is called the 

trace of E over qF . Since 2 q  is small relative to q, we 

have # ( )qE F q . 

There are several methods presently known that can quickly 

determine the order of ( )qE F . Unfortunately none of them 

is effective once q is very large. An alternative approach is 

to use the order of certain points in ( ).qE F Since ( )qE F is 

a group, and then the order of any point in ( )qE F  must 

divide ( )qE F , by Lagrange’s theorem. In Hasse’s 

theorem, we know that ( )qE F is bounded in an interval of 

length 4 q . If we can find a point in ( )qE F of 

order 4m q , then there will be only one multiple of m 

lying in that interval, which must be ( ) .qE F  For example, 

let E be the elliptic curve 
2 3 10 21y x x    over 

(557).GF  It can be shown that the point (2, 3) has order 

189.  Hasse’s theorem says that 

557

557

557 1 2 557 ( ) 557 1 2 557

i.e, 511 ( ) 605

E F

E F

     

   

But the only multiple of 189 in this interval is 3 as 

3 189 576.   Hence, 557( ) 567E F  . 

G.  SUPERSINGULAR CURVES 
Elliptic curves defined over a finite field are of two types. 
Most are what are called ordinary or non-supersingular 
curves, but a small number are supersingular[1]. As 
mentioned in section VI, the order or cardinality of an 

elliptic curve is # ( ) 1 ,qE F q t   where 2 .t q  

Let p be the characteristic of qF . An elliptic curve E 

defined over qF  is supersingular if p divides t, where t is 

the trace. If p does not divide t, then E is non-supersingular 
[2]. The problem with the supersingular elliptic curve is that 

the ECDLP in an elliptic curve E defined over a field qF  

can be reduced to the ordinary DLP in the multiplicative 

group of some finite extension field of qF k for some 1k  . 

It follows that the reduction of ECDLP to ordinary DLP can 
be solved in a sub-exponential time, thus, compromising 
security of the system. To ensure that the reduction does not 
apply to a particular curve, one need to make sure that n, 

the order of the point P, does that divide 1kq  for small k. 

 
H.  AN IMPORTANT THEOREM 

Let E be an elliptic curve defined over qF . Then ( )qE F is 

isomorphic to 1 2n nZ Z  where n1 and n2 are uniquely 

determined positive integers such that n2 divides both n1 

and 1q  . Note that 1 2# ( )qE F n n . If 2 1,n   then 

( )qE F is a cyclic group. If 2 1n  , then ( )qE F  is said to 

have rank 2. If n2 is a small integer (e.g., n = 2 ,3 or 4), we 

sometimes say that ( )qE F  is almost cyclic[1, 2, 12]. Since 

n2 divides n1 and q −1, one expects that ( )qE F  is cyclic or 

almost cyclic for most elliptic curves E over qF . 

I.  SECURITY OF ECC 
Let E be an elliptic curve defined over a finite field 

and let, P be a point (called base point) on E of order n and 
k is a scalar. Calculating the point Q kP from P is very 

easy and Q kP can be computed by repeated point 

additions of P. However, it is very hard to determine the 
value of k knowing the two points: kP and .P  This lead 
leads to the definition of Elliptic Curve Logarithm Problem 
(ECDLP) [12], which is defined as: “Given a base point P 
and the point Q kP , lying on the curve, find the value of 

scalar k, provided that such an integer exists”. The integer 
k is called the elliptic curve discrete logarithm of Q to the 

base P, denoted as log .Pk Q  

 
VII.  PROPOSED AUTHENTICATION PROTOCOL 
Before we explain our protocol, we give a few 

important notations used in this section. 
 Alice: The remote user. 
 Bob: The authentication server. 
 ( , )ABID x y : Identity of Alice and is a point on 

Bob’s curve. 
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 ( , )ABPW x y : Password of Alice and is a point 
on Bob’s curve.  

 : ( , ) ( , )A Bf R X Y R X Y : A mapping 
function that is 
used to map a 

  point from Alice’s curve to a 
point on Bob’s curve. 

 :
 

The concatenation operator. 

The proposed protocol has three phases, registration phase, 
login phase, and authentication phase and each of them is 
explained below. 
 
A.  REGISTRATION PHASE 
We use two different curves in this protocol. One curve is 
used by Alice and the other curve is used by Bob. Each one 
of them exchanges with each other the curve parameters 

( , , , , , , )D q FR a b G n h  comprising of the following:- 

q is the order of the field used 
FR Field representation used for elements of qF . 

,a b  ,a b  in 
2 3y x ax b    

G base point of the curve 
n order of the base point 
 
h cofactor and 

# ( )qE F
h

n
  

The exchange can take place in an unsecure medium as the 
curves are public. 

Bob chooses using his curve a private key Bd such that 

[1, 1]B Bd n   and  a public key 

( , ) . ( , ).B B BQ x y d G x y  

Alice chooses m integers 

1 2, ,..., [1, 1]A A Am Ad d d n   as his private keys. He then 

chooses m points 1 2( , ), ( , ),...,A AP x y P x y  

and ( , )AmP x y  on his curve. Then, he calculates a point 

1

1 1 2 2

( , ) . ( , )

. ( , ) . ( , ) ... . ( , ).

m

D Ai Ai
i

A A A A Am Am

P x y d P x y

d P x y d P x y d P x y




   

  

His public key is the tuple 

 1 2( , ), ( , ), ( , ),..., ( , ) .D A A AmP x y P x y P x y P x y  

Alice submits his public key  

 1 2( , ), ( , ), ( , ),..., ( , )D A A AmP x y P x y P x y P x y  to Bob 

for registration. Bob calculates Alice’s identity and 
password as 

 ( , ) ( , )

( , ) . ( , ).
AB D

AB B AB

ID x y f P x y

PW x y d ID x y




 

Then Bob issues to Alice a smart card which contains the 

public parameter ( , )ABID x y . This value is unique for 

every user, and maintained by Bob. Bob also despatches 

( , )ABPW x y to Alice through a secure channel. 

B.  LOGIN PHASE 
When Alice wants to login to Bob, he inserts his smart card 

into a card reader and keys ( , ), ( , )AB ABID x y PW x y  

and his private keys. Then smart card reader and Alice will 
perform the following steps: 

I. Generates m random numbers 1 2, , ...,A A Amr r r  and 

calculates a point 

1

( , ) . ( , )
m

R Ai Ai
i

P x y r P x y


   

II. Send the login request message 

 ( , ), ( , )AB RID x y P x y  to Bob. 

 
 

III. Then Bob calculates an integer 

 ( , ) ( , ) .B C B AB ABe g T ID x y PW x y    

Here CBT is the current timestamp of Bob. Bob sends 

Be   to Alice.  

 
IV. Alice keys in his private keys, password and calculates 

the followings:- 

 

1 1 1

2 2 2

) .

) .

) ...

) .

) ( , ) . ( , )

) ( , ) ( , ) . ( , )

) ( , )

) ( , ) . ( , )

A A B A

A A B A

Am Am B Am

A B AB

A A B AB

A CA B AB

A A A

I x r e d

II x r e d

III

IV x r e d

V C x y e ID x y

VI D x y C x y e PW x y

VII t g T e PW x y

VIII E x y t G x y

 
 

 


 

  



 

V. Alice sends the tuple 

1 2, ,..., , ( , ),

( , ), ( , ), ( , ),
A A Am A

AB A A CA

x x x C x y

ID x y D x y E x y T

 
 
 

 to Bob. 

Here CAT  is the current timestamp of the Alice. 

 
 

C.  AUTHENTICATION PHASE 
Bob receives the login request and performs the 

following steps: 
I. Check whether ( , )ABID x y   is a valid user identity, if 

not, then Bob rejects the login request. 
II. 

Check, whether � CB CAT T T  � , where �CBT  is 

current timestamp and T�  is the permissible 
transmission delay. If T� is not reasonable, then Bob 
rejects the login. 

III. Bob calculates 

 ( , ) ,B CA B ABt g T e PW x y    

where CAT is the timestamp sent by Alice.
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IV. Evaluate the following equations 

1

. ( , ) . ( , ) . ( , ) (3)

. ( , ) ( , ) ( , ) (4)

. ( , ) . ( , ) 0 (5)

m

R Ai Ai B D
i

A B A A

A B A

I P x y x P x y e P x y

II D x y d C x y C x y

III E x y t G x y



 
  
 
 
 


 

 
If any of the above equations is not satisfied, then 

login is rejected otherwise login is allowed. 
V. If the login request is rejected three times then 

automatically the user account is locked for the day. 
 
D.  PROOF THAT THE ALGORITHM WORKS 

Rewriting equation  (3), we have, 

1

1 1 2 2

( , ) . ( , ) . ( , )

. ( , ) . ( , )

... . ( , ) . ( , )

m

R Ai Ai B D
i

A A A A

Am Am B D

P x y x P x y e P x y

x P x y x P x y

x P x y e P x y



   
 

 
  


 

   
 

 
 
 

1 1 2 2

1 1 1 2 2 2

1

1 1 1 2 2 2

. ( , ) . ( , ) ... . ( , )

. ( , )

. ( , ) . ( , )

... . ( , )

. ( , )

. , .

...

.

( ,

A A A A Am Am

B D

A B A A A B A A

Am B Am Am

m

B Ai Ai
i

A A B A A A B A

Am Am B Am

D

RSH

x P x y x P x y x P x y

e P x y

r e d P x y r e d P x y

r e d P x y

e d P x y

x r e d x r e d

x r e d

P x y



   



   

  

 
  

 
   

 









1

1 1 1 1 2 2

2 2

1 1 2 2

1 1 2 2

) . ( , )

( , ) . ( , ) ( , )

. ( , ) ... ( , )

. ( , )

( . ( , ) . ( , )

... . ( , ))

( , ) ( , ) ... ( ,

m

Ai Ai
i

A A B A A A A

B A A Am Am

B Am Am

B A A B A A

B Am Am

A A A A Am Am

d P x y

r P x y e d P x y r P x y

e d P x y r P x y

e d P x y

e d P x y e d P x y

e d P x y

r P x y r P x y r P x y



   
  

  



 
 

   



1 1 2 2

1 1 2 2

1 1 2 2

)

. ( , ) . ( , )

... . ( , )

. ( , ) . ( , )

... . ( , )

( , ) ( , ) ... ( , )

( , )

B A A B A A

B Am Am

B A A B A A

B Am Am

A A A A Am Am

R

e d P x y e d P x y

e d P x y

e d P x y e d P x y

e d P x y

r P x y r P x y r P x y

P x y

LSH

 
 

 
 

   




 

 

Rewriting equation  (4), we have, 

 

 

( , ) ( , ) ( , )

( , ) ( , )

( , ) . ( , ) . ( , )

( , ) ( , ) . ( , )

( , ) . ( , ) . ( , )

( , ) . ( , )

( , )

A B A A

A B A

A B AB B B AB

A A B AB

A B B AB B B AB

AB B AB

A

D x y d C x y C x y

LSH

D x y d C x y

C x y e PW x y d e ID x y

D x y C x y e PW x y

C x y e d ID x y d e ID x y

PW x y d ID x y

C x y

RSH

 

 
  

 

  










 

Again rewriting equation  (5), we get, 

 
 

 
 
 

( , ) . ( , ) 0

( , ) . ( , )

. ( , ) . ( , )

( , ) . ( , )

( , ) . ( , )

( , ) . ( , )

( , )

( , )

0

A B A

A B A

A A B A

A A A

CA B AB A

CA B AB A

A CA B AB

B CA B AB

E x y t G x y

LSH

E x y t G x y

t G x y t G x y

E x y t G x y

g T e PW x y G x y

g T e PW x y G x y

t g T e PW x y

t g T e PW x y

RHS

 

 
 



  

  

    
    










 

 
E.  CONDITIONS UNDER WHICH THE ALGORITHM 
WILL WORK 
From section VII, we know that Alice’s public key is  

 1 2( , ), ( , ), ( , ),..., ( , )D A A AmP x y P x y P x y P x y
where  

1

1 1 2 2

( , ) . ( , )

. ( , ) . ( , ) ... . ( , )

m

D Ai Ai
i

A A A A Am Am

P x y d P x y

d P x y d P x y d P x y




   



Let 
1 1

2 2

1

1 1 2 2

1 1

( , ) ( , )

( , ) ( , )

...

( , ) ( , ) , w here are som e

integers and ( , ) is the

generator of the Alice's curve.

( , ) . ( , )

. ( , ) . ( , )

... . ( , )

(

A A

A A

Am m A i

A

m

D Ai A i
i

A A A A

Am Am

A A

P x y G x y

P x y G x y

P x y G x y

G x y

P x y d P x y

d P x y d P x y

d P x y

d G




 










 

 
 





 

2 2

1 1 2 2

, ) ( , )

... ( , )

... ( , )

A A

Am m A

A A Am m A

x y d G x y

d G x y

d d d G x y




  


 

   
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As given in section VII, the order of the Elliptic Curve of 

Alice is An , then Alice will have to make sure that the 

following inequality is satisfied. 

 1 1 2 2 ... ( 1).A A Am m Ad d d n        

 But, in most cases, it will not create any problem as the 
order of any curve used in cryptography is very very huge 
.    
F.  SECURITY ANALYSIS 
It is assumed here that Eve steals the smart card of a person. 
He inserts the smart card into the card reader and keys 

�( , ), ( , )AB ABID x y PW x y  and private keys. Then smart 

card reader and he will perform the following steps:  
 

I. Generates m random numbers 1 2, , ...,A A Amr r r  and  

calculates 

1

1 1 2 2

( , ) . ( , )

. ( , ) . ( , ) ... . ( , )

m

R Ai Ai
i

A A A A Am Am

P x y r P x y

r P x y r P x y r P x y




   



 
 

II. Send the login request message 

 ( , ), ( , )AB RID x y P x y  to Bob. 

 
III. Then Bob calculates an 

integer

� � ( , ) ( , )B C B AB ABe g T ID x y PW x y    and 

send  it to him. 
 

IV. Eve keys in private keys, password and calculates 
the followings:- 

� � �

� � �

� � �

� �

� � � �

� � � 
� �

1 1 1

2 2 2

) .

) .

) ...

) .

) ( , ) . ( , )

) ( , ) ( , ) . ( , )

) ( , )

) ( , ) . ( , )

A A B A

A A B A

Am Am B Am

A B AB

A A B AB

A CE B AB

A A A

I x r e d

II x r e d

III

IV x r e d

VI C x y e ID x y

VI D x y C x y e PW x y

VII t g T e PW x y

VIII E x y t G x y

 

 

 



 

  



 

 

V.   The tuple 
� � � �

� �
1 2( , ,..., , ( , ),

( , ), ( , ), ( , ), )

A A Am A

AB A A CE

x x x C x y

ID x y D x y E x y T
 is 

sent to Bob by Eve. Here CET  is the current timestamp 

of the Eve. 
 
 

G  AUTHENTICATION PHASE 
Bob receives the login request and performs the 

following steps: 
 

 
I. Check whether ( , )ABID x y   is a valid user identity, if 

not, then Bob rejects the login request.  
 

II. 
Check, whether � CB CET T T  � , where �CBT  is 

current timestamp and T�  is the permissible 
transmission delay. If T� is not reasonable, then Bob 
rejects the login. 
 

III. 
Bob calculates � � � ( , )B CE B ABt g T e PW x y   , 

where CET is the timestamp sent by Eve. 

 
IV. Now Eve gets the following equations 

� �

� �

� �

� � �

� �

1

1 1 2 2

) ( , ) . ( , ) . ( , )

. ( , ) . ( , )

... . ( , ) . ( , )

) ( , ) ( , ) ( , )

) ( , ) . ( , ) 0

m

R Ai Ai B D
i

A A A A

Am Am B D

A B A A

A B A

I P x y x P x y e P x y

x P x y x P x y

x P x y e P x y

II D x y d C x y C x y

III E x y t G x y



   
 

 

  

 

 



 

 
 

From the above equations, let see whether Eve can recover 
the private keys and password in polynomial time. 
Consider the equation 

� �

� �

� �

1

1 1 2 2

( , ) . ( , ) . ( , )

. ( , ) . ( , )

... . ( , ) . ( , )

m

R Ai Ai B D
i

A A A A

Am Am B D

P x y x P x y e P x y

x P x y x P x y

x P x y e P x y



   
 

 

  



 

 
We have  
� � �

� � �

� � �

1 1 1

2 2 2

1

1 1 2 2

.

.

...

.

( , ) . ( , )

. ( , ) . ( , ) ... . ( , )

A A B A

A A B A

Am Am B Am

m

R Ai Ai
i

A A A A Am Am

x r e d

x r e d

x r e d

P x y r P x y

r P x y r P x y r P x y


 

 

 



   



 
So,  
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� � �

� � � �

� � � � � �

�

1

1 1 2 2

1 1 1 2 2 2

1 1 2 2

( , ) . ( , ) . ( , )

. ( , ) . ( , ) ... . ( , ) . ( , )

( . ). ( , ) ( . ). ( , ) ... ( . ). ( , )

. . ( , ) . ( , ) ...

m

R Ai Ai B D
i

A A A A Am Am B D

A B A A A B A A Am B Am Am

B A A A A

P x y x P x y e P x y

x P x y x P x y x P x y e P x y

r e d P x y r e d P x y r e d P x y

e d P x y d P x y



   
 

    

      

   



 
� � � � � �

� � �
1 1 1 1 2 2 2 2

1 1 2 2

1 2

. ( , )

. ( , ) . . ( , ) . ( , ) . . ( , ) ... . ( , ) . . ( , )

. . ( , ) . . ( , ) ... . . ( , )

( , ) . ( , ) . ( , ) ... . (

Am Am

A A B A A A A B A A Am Am B Am Am

B A A B A A B Am Am

A A A A A Am A

d P x y

r P x y e d P x y r P x y e d P x y r P x y e d P x y

e d P x y e d P x y e d P x y

T x y d U x y d V x y d W x

      

   
    

� �

� �

�

1 1 1 1 2 2

1 2

1

, )

[ ( , ) . ( , ) . . ( , ) . ( , ) ... . ( , )

( , ) . ( , ), ( , ) . ( , )

...

( , ) . ( , )]

( , ) ( , )

A A A B A A A A Am Am

A B A A B A

A B Am

R A A

y

T x y r P x y e d P x y r P x y r P x y

U x y e P x y V x y e P x y

W x y e P x y

P x y T x y d

    

   

 

  
�

2

1 2

. ( , ) . ( , ) ... . ( , )

( , ) . ( , ) . ( , ) ... . ( , ) [ ( , ) ( , ) ( , )]

A A A Am A

A A A A A Am A A A A

U x y d V x y d W x y
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Now, 1 2, ,...,A Ad d  and Amd can’t be found out in 

polynomial time because of the ECDLP of  elliptic curves. 
 

Next consider the equation 
� � �( , ) ( , ) ( , ).A B A AD x y d C x y C x y   

We have, 
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Again, we cannot solve �Bd  in polynomial time because of 

the ECDLP of elliptic curves. In the same way, we cannot 

solve for �
Bt  in the third equation 

� �( , ) . ( , ) 0A B AE x y t G x y    in   polynomial time. So, 

Eve cannot masquerade as Alice. 
 

CONCLUSIONS 
Smart cards can add convenience and safety to any 

transaction of data. But the integration of RSA algorithm in 
Smart cards is not efficient due to the larger key size 
demand of RSA to cope up with today’s security 
requirement. ECC may be a right choice for Smart Cards’ 
security. We have also proposed a protocol for Smart card 
authentication using Elliptic Curves. 

 

REFERENCES 
[1] Ian Blake, Gadiel Seroussi, Higel Smart, Elliptic Curves in 

Cryptography,  Cambridge University Press, 1999. 
[2] Lawrence C. Washington, Elliptic Curves, Number Theory and 

Cryptography, CRC Press, 2008. 
[3] Joseph H. Silverman, John Tate, Rational Points on Elliptic Curves, 

Springer, 1992. 
[4] Menezes, Okamoto, Vanstone, “Reducing Elliptic Curve 

Logarithms to Logarithms in a Finite Field, IEEE Transaction on 
Information Theory, vol. 39, 1993. 

[5] Henri Cohen, Gerhard Frey, Handbook of Elliptic and Hyperelliptic 
Curve Cryptography, CRC Press, 2006. 

[6] Neal Koblitz, Alfred J. Menezes, “A survey of public-key 
cryptosystems,”, Aug 7. 2004. 

[7] Smart Cards from The Wikipedia website. [Online]. Available: 
http://en.wikipedia.org/ 

[8] Joseph H. Silverman, John Tate, Rational Points on Elliptic Curves, 
Springer, 1992. 

[9] Joseph H. Silverman, The Arithmetic of Elliptic Curves,  Springer, 
1986. 

[10] J. J. Shen, C. W. Lin and M. S. Hwang, “A modified remote user 
authentication scheme using smart cards,” IEEE Trans. Consumer 
Electronic, vol. 49, no. 2, pp. 414-416, May 2003. 

[11] Thomas Koshy, Elementary Number Theory with Applications, 
Academic Press, 2009. 

[12] Ian Blake, Gadiel Seroussi, Higel Smart, Advances in Elliptic Curve 
Cryptography, Cambridge University Press, 2005. 

[13] Erdinc Ozturk, “Low Power Elliptic Curve Cryptography” M.Sc 
thesis, Worcester Polytechnic Institute, April 2004. 

[14] Bhattacharya, Jain, Nagpaul, Basic Abstract Algebra, Cambridge 
University Press, 2002. 

[15] Bruice Schneier, Applied Cryptography, Wiley India, 2007. 
[16] William Stallings, Cryptography & Network Security, PHI, 2006 
[17] Atul Kahate,  Cryptography and Network Security, 2E, Tata 

McGraw, 2011. 
[18] Rotman, Galois Theory, Springer International Edition, 2010. 
[19] R.L.Rivest, A.Shamir & L.M.Adleman, ” A method for obtaining 

Digital Signature and Public Key Cryptosystems”, ACM, 1978. 
[20] W. Diffie, P Vanoorschot, and M. Wiener, “Authentication and 

authenticated key exchanges. Designs, Codes and Cryptography”, 
107–125, 1992. 

[21] Business Security Measures Using SSL, Realtime Publishers. 

Ranbir Soram et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,3856-3866

3865



[22] Kristin Lauter, “The Advantages of Elliptic  Curve  Cryptography 
for Wireless Security”, Microsoft Corporation. 

[23] The Times of India, Kolkata, Tuesday, November 29, 2011, “How 
to secure your online transactions”. 

[24] The Accord Fintech, Wednesday, March 14, 2012, “State Bank of 
India likely to install authentication biometric devices”. 

[25] The Rupee Times, March 14, 2012,”SBI to come up with biometric 
customer authentication devices”. 
 
 

 

Ranbir Soram is working as a lecturer in 
Computer Science and Engineering at 
Manipur Institute of Technology, 
Takyelpat, Imphal, India. His field of 
interest includes network security, neural 
network, genetic algorithm etc. 

 

Ranbir Soram et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,3856-3866

3866




